

Graph Structure Learning via Lottery Hypothesis at Scale

Yuxin Wang, Xiannian Hu*, Jiaqing Xie*, Zhangyue Yin*, Yunhua Zhou, Xuanjing Huang, Xipeng Qiu

ETH zürich

November 12th, 2023

Terminology Review

• Graph Neural Networks

• Graph Structure Learning

• Graph Attack / Defense

• Lottery Ticket Hypothesis

Graph Neural Networks

William L. et al. 2017

Graph Structure Learning

Main Idea: Learn Better Graph Structures

Methods:

- Similarity Metrics
- Graph Sparsification

- Graph Regularization
- Learning Paradigms

GNNBook Chapter 14

Graph(NN) Attack

Examples on Graph-level Attack:

• Remove / Add nodes (Xu et al. 2019a, Wu et al. 2019)

An example on Model-level Attack:

• Training surrogate models (Zugner et al. 2019)

Graph Defense

- Graph purification: an example of graph defense
- Previous graph purification are regularization methods

Disadvantage:

- Lack of scalability (Chen et al. 2020a, Jin et al. 2020)
- Top-k-features: not ensure dense graphs (Entezari et al. 2020)

Lottery Ticket Hypothesis

DNN:

Find a pruned small sub-network that performed on par with the original large-scale network.

GNN:

Treat entries of adjacency matrix as parameters. Prune this matrix simultaneously with graph neural networks.

Graph Structure Learning with Lottery Ticket

Graph Structure Learning with Lottery Ticket

Algorithm 1 GSL-LH algorithms

Input: Feature X, label y, input father graph \mathcal{G}_F , graph neural network $f(\Theta, \mathbf{A}; \cdot)$, adjacent mask logits π_{adj} , weight mask logits π_{Θ} , adjacent sparsity s_{adj} , weight sparsity s_{Θ} , number of steps for model and lottery search training N_1, N_2 .

```
Stage 1: full model (pre-) train
Get model initialization \Theta_0, \mathbf{A}_F.
for n=1 to N_1 do
   Update f with \mathcal{L}_{CE}(\Theta, \mathbf{A}_F) := \sum_{i c} y_{i,c} \log f(\Theta, \mathbf{A}_F; x_i)_c.
end for
Stage 2: subgraph and subnetwork lottery searching
Initialize weight mask logits \pi_{\Theta} and adjacent mask logits \pi_{adj} to 1.
for n=1 to N_2 do
   Update module \pi_{\Theta} and \pi_{adj} with
          \mathcal{L}_{GSL} = \mathcal{L}_{CE}(\pi_{adj} \odot A_F, \pi_{\Theta} \odot \Theta_*)
end for
Stage 3: subgraph and subnetwork retrain
Obtain the module by pruning with sparsity s_{adj} and s_{\Theta}.
          m_{adj} = \operatorname{Prune}\left(\pi_{adj}, s_{adj}\right)
          m_{\Theta} = \operatorname{Prune}(\pi_{\Theta}, s_{\Theta}).
Set model parameters back to \Theta_0.
for n=1 to N_1 do
   Update f with \mathcal{L}_{CE}(\boldsymbol{m}_{adi} \odot \boldsymbol{A}_{\boldsymbol{F}}, \boldsymbol{m}_{\boldsymbol{\Theta}} \odot \boldsymbol{\Theta}_0).
end for
```

Sampling Methods

- Random Sampling
 - Sample randomly from neighbour nodes
- Feature Sampling
 - Sample by thresholding similarity of node pairs
- Lottery Sampling
 - Obtain attention matrix P by normalizing inner products of node pairs

$$\boldsymbol{P}(i,j) = \boldsymbol{v_i}^T \boldsymbol{v_j}$$

• Randomly sample r. If r in $\left(\sum_{k=1}^{j-1} P(i,k), \sum_{k=1}^{j} P(i,k)\right]$, add j to neighbours of i

Time Complexity Analysis

- Time Complexity for pruning and masking: O(E)
- Training GNN: O(E) Wu et al. 2020
- Overall O(E)
- Better than graph decomposition
 - Example 1: spectral decomposition O(N^3) >> O(E)
 - Example 2: decomposition by cuts O(N^2 log N) >> O(E)

Baselines

- GAT
- GCN
- RGCN
- GCN-Jaccard
- GCN-SVD
- Pro-GNN-fs

Datasets

• Cora

• Cora-ML

• Citeseer

• PubMed

• Arxiv

Results

Dataset	Ptb Rate (%)	GCN	GAT	RGCN	GCN-Jaccard	GCN-SVD	Pro-GNN-fs	GSL-LH
Cora	0 5 10 15 20 25	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{83.97 \pm 0.65}{80.44 \pm 0.74} \\75.61 \pm 0.59 \\69.78 \pm 1.28 \\59.94 \pm 0.92 \\54.78 \pm 0.74$	$\begin{array}{c} 83.09 {\pm} 0.44 \\ 77.42 {\pm} 0.39 \\ 72.22 {\pm} 0.38 \\ 66.82 {\pm} 0.39 \\ 59.27 {\pm} 0.37 \\ 50.51 {\pm} 0.78 \end{array}$	$\begin{array}{c} 82.05 {\pm} 0.51 \\ 79.13 {\pm} 0.59 \\ 75.16 {\pm} 0.76 \\ 71.03 {\pm} 0.64 \\ 65.71 {\pm} 0.89 \\ \underline{60.82 {\pm} 1.08} \end{array}$	$\begin{array}{c} 80.63{\pm}0.45\\ 78.39{\pm}0.54\\ 71.47{\pm}0.83\\ 66.69{\pm}1.18\\ 58.94{\pm}1.13\\ 52.06{\pm}1.19\end{array}$	$\begin{array}{c} 83.42{\pm}0.52\\ \textbf{82.78}{\pm}0.39\\ \hline 77.91{\pm}0.86\\ \hline \hline 76.01{\pm}1.12\\ \hline 68.78{\pm}5.84\\ \hline 56.54{\pm}2.58\end{array}$	$\begin{array}{c} 84.33 {\pm} 0.27 \\ \underline{82.00 {\pm} 0.27} \\ \overline{\textbf{79.31 {\pm} 0.49}} \\ \overline{\textbf{77.95 {\pm} 0.40}} \\ \overline{\textbf{74.97 {\pm} 0.31}} \\ \overline{\textbf{68.92 {\pm} 0.60}} \end{array}$
Cora ML	$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 20\\ 25\end{array}$	$\begin{vmatrix} 85.25 \pm 0.33 \\ 79.19 \pm 0.36 \\ 73.83 \pm 0.45 \\ 54.35 \pm 0.66 \\ 43.11 \pm 3.30 \\ 48.45 \pm 0.48 \end{vmatrix}$	$\begin{array}{c} 85.49{\pm}0.24\\ 81.06{\pm}0.59\\ 76.26{\pm}0.99\\ 57.96{\pm}1.34\\ 42.69{\pm}1.21\\ 43.74{\pm}4.44\end{array}$	$\frac{86.48 \pm 0.16}{81.62 \pm 0.14}$ 74.46 \pm 0.18 54.87 \pm 0.33 46.62 \pm 0.66 50.15 \pm 0.36	$\begin{array}{c} 84.82{\pm}0.27\\ 80.23{\pm}0.40\\ 75.21{\pm}0.23\\ 57.45{\pm}0.65\\ 45.77{\pm}1.30\\ 49.05{\pm}0.41\end{array}$	$\begin{array}{c} 80.97{\pm}0.31\\ 80.23{\pm}0.34\\ 80.61{\pm}0.37\\ \textbf{73.54{\pm}0.43}\\ 46.94{\pm}1.69\\ \underline{56.28{\pm}0.86}\end{array}$	$\begin{array}{r} 85.06 {\pm} 0.33 \\ 83.25 {\pm} 0.71 \\ \hline 81.52 {\pm} 0.93 \\ \hline 53.81 {\pm} 0.27 \\ \hline 47.54 {\pm} 0.37 \\ \hline 50.99 {\pm} 0.27 \end{array}$	$\begin{array}{c} 86.50 {\pm} 0.17 \\ 85.95 {\pm} 0.15 \\ 84.78 {\pm} 0.10 \\ \hline 71.66 {\pm} 0.30 \\ \hline 70.37 {\pm} 1.70 \\ 71.37 {\pm} 0.74 \end{array}$
Citeseer	$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 20\\ 25\end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 73.26 {\pm} 0.83 \\ 72.89 {\pm} 0.83 \\ 70.63 {\pm} 0.48 \\ 69.02 {\pm} 1.09 \\ 61.04 {\pm} 1.52 \\ 61.85 {\pm} 1.12 \end{array}$	$\begin{array}{c} 71.20 {\pm} 0.83 \\ 70.50 {\pm} 0.43 \\ 67.71 {\pm} 0.30 \\ 65.69 {\pm} 0.37 \\ 62.49 {\pm} 1.22 \\ 55.35 {\pm} 0.66 \end{array}$	$\begin{array}{c} 72.10 {\pm} 0.63 \\ 70.51 {\pm} 0.97 \\ 69.54 {\pm} 0.56 \\ 65.95 {\pm} 0.94 \\ 59.30 {\pm} 1.40 \\ 59.89 {\pm} 1.47 \end{array}$	$\begin{array}{c} 70.65 {\pm} 0.32 \\ 68.84 {\pm} 0.72 \\ 68.87 {\pm} 0.62 \\ 63.26 {\pm} 0.96 \\ 58.55 {\pm} 1.09 \\ 57.18 {\pm} 1.87 \end{array}$	$\begin{array}{r} 73.26 \pm 0.38 \\ \hline 73.09 \pm 0.34 \\ \hline 72.43 \pm 0.52 \\ \hline 70.82 \pm 0.87 \\ \hline 66.19 \pm 2.38 \\ \hline 66.40 \pm 2.57 \end{array}$	$76.78 \pm 0.29 \\ 74.96 \pm 0.25 \\ 74.37 \pm 0.31 \\ 71.73 \pm 0.56 \\ 66.26 \pm 0.60 \\ 66.77 \pm 0.37 \\ \end{cases}$
Pubmed	$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 20\\ 25\end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 83.73 {\pm} 0.40 \\ 78.00 {\pm} 0.44 \\ 74.93 {\pm} 0.38 \\ 71.13 {\pm} 0.51 \\ 68.21 {\pm} 0.96 \\ 65.41 {\pm} 0.77 \end{array}$	$\begin{array}{c} 86.16 \pm 0.18 \\ 81.08 \pm 0.20 \\ 77.51 \pm 0.27 \\ 73.91 \pm 0.25 \\ 71.18 \pm 0.31 \\ 67.95 \pm 0.15 \end{array}$	87.06 ± 0.06 86.39 ± 0.06 85.70 ± 0.07 84.76 ± 0.08 83.88 ± 0.05 83.66 ± 0.06	$\begin{array}{c} 83.44 {\pm} 0.21 \\ 83.41 {\pm} 0.15 \\ 83.27 {\pm} 0.21 \\ 83.10 {\pm} 0.18 \\ 83.01 {\pm} 0.22 \\ 82.72 {\pm} 0.18 \end{array}$	$\begin{array}{r} 87.33 {\pm} 0.18 \\ \hline 87.25 {\pm} 0.09 \\ \hline 87.25 {\pm} 0.09 \\ \hline 87.20 {\pm} 0.09 \\ \hline 87.09 {\pm} 0.10 \\ \hline 86.71 {\pm} 0.09 \end{array}$	$\begin{array}{r} \textbf{87.46 \pm 0.05} \\ \textbf{87.27 \pm 0.05} \\ \hline \textbf{87.18 \pm 0.06} \\ \hline \textbf{86.90 \pm 0.03} \\ \hline \textbf{86.61 \pm 0.05} \\ \hline \textbf{86.37 \pm 0.07} \end{array}$
Arxiv	$ \begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{71.18 \pm 0.11} \\ \textbf{55.74 \pm 0.27} \\ \underline{48.68 \pm 0.33} \\ \underline{44.34 \pm 0.44} \\ \underline{41.36 \pm 0.20} \\ \underline{39.36 \pm 0.51} \end{array}$	- - - - -	- - - - -	- - - - -	- - - - -	$\begin{array}{c} 70.90 {\pm} 0.20 \\ \underline{54.56 {\pm} 0.49} \\ \textbf{50.12 {\pm} 0.67} \\ \textbf{50.95 {\pm} 0.07} \\ \textbf{50.40 {\pm} 0.27} \\ \textbf{50.02 {\pm} 0.20} \end{array}$

Table 2: Node classification performance (Accuracy±Std) under attack. We use metattack for regular-size graphs and PR-BCD for Arxiv. "-" means not applicable. Performances of all baselines in Cora ML are not available and are run by ourselves. Other baseline performances are from Pro-GNN Jin et al. (2020). Bold symbols and underlines mean the first and second best performances respectively.

Results

Ptb Rate (%)	GCN	GSL-LH	PPRGO	SoftMedian+PPRGO	GSL-LH+PPRGO
5	53.43 ± 0.27	54.56 ± 0.49	58.18 ± 0.23	57.24 ± 0.16	57.96 ± 0.48
10	46.75 ± 0.47	50.12 ± 0.67	53.39 ± 0.24	55.39 ± 0.29	56.37 ± 0.47
15	43.39 ± 0.62	50.95 ± 0.07	51.27 ± 0.17	54.56 ± 0.31	54.83 ± 0.43
20	40.17 ± 0.63	50.40 ± 0.27	50.31 ± 0.32	54.40 ± 0.12	53.98 ± 0.42
25	37.77 ± 0.65	50.02 ± 0.24	48.58 ± 0.40	54.59 ± 0.26	53.34 ± 0.40

Table 3: Node classification performance (Accuracy±Std) on ogbn-Arxiv under PR-BCD of different methods based on PPRGO.

Ablation Study

• Sampling

Ptb Rate (%)	Random	Feature	Lottery
5	52.84 ± 1.33	53.73 ± 0.63	54.56 ± 0.49
10	49.54 ± 0.71	49.20 ± 3.70	50.12 ± 0.67
15	50.70 ± 0.16	50.93 ± 0.29	50.95 ± 0.07
20	50.08 ± 0.19	45.27 ± 7.34	$\textbf{50.40} \pm \textbf{0.27}$
25	49.69 ± 0.07	50.22 ± 0.24	50.02 ± 0.20

 Table 4: Performances of different sampling methods in GSL-LH under different perturbation rates.

Ablation Study

• Prune sparsity

Acc. Weight Sparsity Adj Sparsity	None	0.2	0.4	0.6	0.8
None	54.56 ± 0.49	53.28 ± 1.53	52.73 ± 1.44	51.84 ± 0.85	49.76 ± 1.21
0.2	51.85 ± 0.52	50.89 ± 1.32	51.20 ± 0.73	51.02 ± 0.84	47.65 ± 1.15
0.4	48.90 ± 0.96	49.31 ± 0.52	47.45 ± 1.20	48.20 ± 1.16	47.02 ± 0.41
0.6	51.14 ± 0.17	49.80 ± 0.43	47.72 ± 1.44	43.39 ± 3.29	44.12 ± 3.78
0.8	52.34 ± 0.11	50.75 ± 0.62	48.60 ± 1.75	43.57 ± 4.59	11.00 ± 11.50

Table 5: Performances of different adjacent sparsity and weight sparsity under perturbation rate of 0.05. None means we don't prune the mask and maintain the trained scores in the model retrain step.

Acc. Weight Sparsity Adj Sparsity	None	0.2	0.4	0.6	0.8
None	42.12 ± 1.67	41.57 ± 0.79	41.15 ± 0.45	42.12 ± 0.21	39.49 ± 1.25
0.2	41.33 ± 0.24	41.56 ± 0.19	40.17 ± 0.55	40.68 ± 0.18	25.14 ± 8.01
0.4	43.55 ± 0.21	43.57 ± 0.35	41.49 ± 1.07	38.79 ± 2.43	25.77 ± 9.12
0.6	46.36 ± 0.17	45.25 ± 0.41	43.51 ± 1.20	36.55 ± 5.23	26.12 ± 10.20
0.8	$\textbf{50.02} \pm \textbf{0.20}$	48.55 ± 0.71	46.36 ± 1.72	41.37 ± 4.16	26.62 ± 11.33

Table 6: Performances of different adjacent sparsity and weight sparsity under perturbation rate of 0.25. None means we don't prune the mask and maintain the trained scores in the model retrain step

Future works

Test with more recent advanced model (Dual Graph Lottery Ticket)
 Kun et al. ICLR 2023

• Test on more large-scale graph datasets

Resources

Code Repo: <u>https://github.com/jiaqingxie/GSL-LH</u>

Paper: Proceedings of Machine Learning Research 222, 2023